News

Finite element methods (FEM) constitute a foundational numerical approach for solving partial differential equations by discretising complex domains into smaller, manageable subdomains known as ...
This is a preview. Log in through your library . Abstract A finite element method is derived for solving equations of the following type $-(p(x)u'(x, \omega))' + (q(x) + r(x)\lambda(\omega))^2u(x, ...
This work proposes and analyzes a stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms. These input data are assumed to depend ...
Physics and Python stuff. Most of the videos here are either adapted from class lectures or solving physics problems. I really like to use numerical calculations without all the fancy programming ...
Calculation: A representation of a network of electromagnetic waveguides (left) being used to solve Dirichlet boundary value problems. The coloured diagrams at right represent the normalized ...
Physics and Python stuff. Most of the videos here are either adapted from class lectures or solving physics problems. I really like to use numerical calculations without all the fancy programming ...
The finite element method (FEM) has evolved into a robust and flexible tool for solving partial differential equations (PDEs) defined on surfaces. Its versatility allows for the treatment of complex ...